Sample Question Paper - 2 Class- IX Session- 2021-22

TERM 1

Subject- Mathematics

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 40

General Instructions:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

Section A

Attempt any 16 questions

1. After simplification, $\frac{13^{1/5}}{13^{1/3}}$ is

[1]

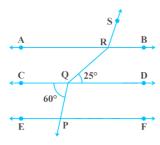
a)
$$13^{8/15}$$

b)
$$13^{2/15}$$

c)
$$13^{-2/15}$$

d)
$$13^{1/3}$$

2. The cost of 2 kg of apples and 1 kg of grapes on a day was found to be ₹160. A linear equation [1] in two variables to represent the above data is


a)
$$x - 2y = 160$$

b)
$$2x + y = 160$$

c)
$$x + y = 160$$

d)
$$2x - y = 160$$

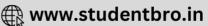
3. In a given figure, if AB | | CD | | EF, PQ | | RS, $\angle RQD = 25^{\circ}$ and $\angle CQP = 60^{\circ}$, then $\angle QRS$ is equal [1] to

a) 85°

b) 110°

c) 135°

- d) 145°
- 4. The base of an isosceles triangle is 8 cm long and each of its equal sides measures 6 cm. The area of the triangle is
 - a) $8\sqrt{5}$ cm²


b) $8\sqrt{3}$ cm²

c) $16\sqrt{3}$ cm²

- d) $16\sqrt{5}$ cm²
- 5. If $(16)^{2x+3} = (64)^{x+3}$, then $4^{2x-2} =$

[1]

a) 64

b) 256

c) 512

d) 32

6. The equation of a line parallel to x-axis and 3 units above the origin is [1]

a)
$$x = 3$$

b)
$$x = -3$$

c)
$$y = 3$$

d)
$$y = -3$$

7. Ordinate of a point is negative in [1]

a) quadrant IV only

b) quadrant III only

c) quadrant I and II

d) quadrant III and IV

8. It is given that $\triangle ABC \cong \triangle FDE$ and AB = 5 cm, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$. Then which of the following is true?

[1]

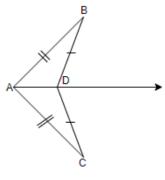
a) DE = 5 cm,
$$\angle$$
E = 60°

b) DF = 5 cm,
$$\angle$$
E = 60°

c) DF = 5 cm,
$$\angle$$
F = 60°

d) DE = 5 cm,
$$\angle$$
D = 40°

An irrational number between $\sqrt{2}$ and $\sqrt{3}$ is 9.


[1]

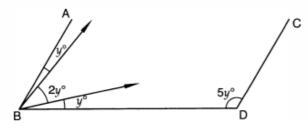
a)
$$(\sqrt{2}+\sqrt{3})$$

b)
$$\sqrt{2} imes\sqrt{3}$$

In fig., $\triangle ABD\cong\triangle ACD$, AB = AC, BD = DC name the criteria by which the triangles are 10. congruent:

[1]

a) ASA


b) RHS

c) SSS

d) SAS

In Fig., if line segment AB is parallel to the line segment CD, what is the value of y? 11.

[1]

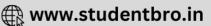
a) 12

b) 18

c) 20

d) 15

The simplified form of $16^{rac{-1}{4}} imes \sqrt[4]{16}$ is 12.


[1]

a) 16

b) 1

c) 4

d) 6

13.	If $8^{x+1} = 64$, what is the value of 3^{2x+1} ?		[1]		
	a) 3	b) 27			
	c) 1	d) 9			
14.	A point whose abscissa is -3 and ordinate 2 lies in				
	a) second quadrant	b) fourth quadrant			
	c) first quadrant	d) third quadrant			
15.	The distance between the graph of the equations $x = -3$ and $x = 2$ is				
	a) 1	b) 3			
	c) 2	d) 5			
16.	In \triangle RST (See Figure), what is the value of x?		[1]		
	$\frac{S}{x^{\circ}}$ $\frac{140^{\circ}}{b^{\circ}}$ $\frac{b^{\circ}}{b^{\circ}}$				
	a) 100°	b) 40°			
	c) 90°	d) 80°			
17.	The sides of a triangle are x, y and z. If $x + y = triangle$ is:	7 m, $y + z = 9$ m, and $z + x = 8$ m, then area of the	[1]		
	a) _{4 m} ²	b) _{7 m²}			
	c) _{5 m²}	d) _{6 m²}			
18.	18. The marks obtained by 17 students in a mathematics test (out of 100) are given below : 91, 82, 100, 100, 96, 65, 82, 76, 79, 90, 46, 64, 72, 68, 66, 48, 49. Find the range of the data.				
	a) 90	b) 46			
	c) 100	d) 54			
19.	The simplest form of $0.12\overline{3}$ is		[1]		
	a) none of these	b) $\frac{37}{330}$			
	c) $\frac{41}{330}$	d) $\frac{41}{333}$			
20.	The distance of the point P (4, 3) from the orig		[1]		
	a) 3	b) 5			
	c) 7	d) 4			
	Sec	tion B			
		y 16 questions	.		
21.	The graph of the line $x = -2$ passes through		[1]		
	a) (3, -2)	b) (-2, 3)			

->	(0	4
C)	(0,	4

d) (-1, 4)

22. The base of a right triangle is 8 cm and hypotenuse is 10 cm. Its area will be:

[1]

b) 24 cm^2

c)
$$80 \text{ cm}^2$$

d) 40 cm^2

23. The value of k if x = 3 and y = -2 is a solution of the equation 2x - 13y = k is

[1]

b) 23

c) 32

d) 30

24. The area of a triangle whose vertices are (0,0), (4,0) and (0,6) is:

[1]

b) 36 sq. units

c) 12 sq.units

d) 24 sq. units

25. $\frac{125}{216}^{\frac{-1}{3}}$

[1]

a)
$$\frac{6}{5}$$

b) 125

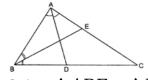
c)
$$\frac{5}{6}$$

d) 216

26. Area of an equilateral triangle of side 10 cm is:

[1]

a)
$$50\sqrt{3}$$
 cm²


b) $100\sqrt{3} \text{ cm}^2$

c)
$$10\sqrt{3}~\text{cm}^2$$

d) $25\sqrt{3} \text{ cm}^2$

27. In figure, ABC is a triangle in which $\angle B = 2\angle C$. D is a point on side BC such that AD bisects $\angle BAC$ and AB = CD. BE is the bisector of $\angle B$. The measure of $\angle BAC$ is

[1]

[Hint: $\triangle ABE \cong \triangle DCE$]

b) 73°

d) 95°

28. The rationalisation factor of $\frac{1}{2\sqrt{3}-\sqrt{5}}$ is

[1]

a)
$$(\sqrt{3} + \sqrt{5})$$

b) $\sqrt{12} + \sqrt{5}$

c)
$$\sqrt{5} - 2\sqrt{3}$$

d) $\sqrt{3}+2\sqrt{5}$

29. The ordinate of any point on x-axis is

[1]

a) 0

b) any number

c) -1

d) 1

30. In a bar graph, 0.25 cm length of a bar represents 100 people. Then, the length of bar which represents 2000 people is

[1]

a) 4.5 cm

b) 4 cm

c) 5 cm

d) 3.5 cm

31. The sides of a triangle are 5 cm, 12 cm and 13 cm. then its area is

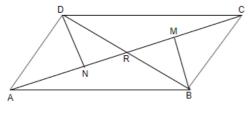
[1]

a) 0.003 m²

b) 0.0015 m²

c) 0.0024 m²

- d) 0.0026 m²
- 32. If $\sqrt{2}=1.4142,$ then $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$ is equal to


[1]

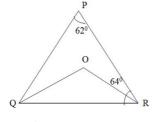
a) 0.1718

b) 5.8282

c) 0.4142

- d) 2.4142
- 33. In quadrilateral ABCD, BM and DN are drawn perpendiculars to AC such that BM = DN. If BR = [1] 8 cm. then BD is

a) 12 cm


b) 4 cm

c) 16 cm

- d) 2 cm
- 34. The empirical relation between mean, mode and median is:

[1]

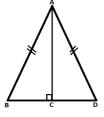
- a) Mode = 3 Mean 2 Median
- b) Mode = 3 Median + 2 Mean
- c) Mode = 3 Median 2 Mean
- d) Mode = 2 Median 3 Mean
- 35. In the adjoining figure \angle QPR = 62° and \angle PRQ = 64°. If OQ and OR and bisectors of \angle PQR and [1] \angle PRQ respectively, then \angle OQR and \angle QOR :-

a) 121°, 20°

b) 27°, 121°

c) 20°, 80°

- d) 26°, 124°
- 36. x = 2, y = 5 is a solution of the linear equation


[1]

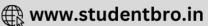
a) 5 x + y = 7

b) x + y = 7

c) 5x + 2y = 7

- d) x + 2y = 7
- 37. In the adjoining figure, AB = AC and AD \perp BC. The rule by which $\triangle ABD \cong \triangle ACD$ is
- [1]

a) RHS


b) ASA

c) SAS

- d) SSS
- 38. If $x=3+\sqrt{8}$, then the value of $\left(x^2+rac{1}{x^2}
 ight)$ is

[1]

a) 32

b) 34

c) 6

d) 12

39. The side BC of \triangle ABC is produced to a point D. The bisector of \angle A meets side in L. If \angle ABC = 30° and \angle ACD = 115°, then \angle ALC =

[1]

a) 85°

b) None of these

c) 145°

d) $72\frac{1}{2}^{\circ}$

40. To draw a histogram to represent the following frequency distribution: [1]

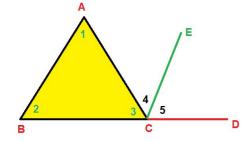
Class interval	5-10	10-15	15-25	25-45	45-75
Frequency	6	12	10	8	15

The adjusted frequency for the class 25-45 is

a) 6

b) 5

c) 2


d) 3

Section C

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

Once the Maths teacher of class IX D told students that today we will prove that the sum of all three angles is 180°. As shown in the figure, he told to draw any triangle ABC in the notebook. Further side BC was extended to D.

Now the teacher said to draw CE | | BA.

Further angles were named 1 to 5 as shown in the figure.

41. $\angle 2$ is equal to which angle? [1]

a) ∠2

b) ∠4

c) ∠5

d) ∠3

BA | | CE and AC is the transverse line, So $\angle 1$ is equal to which angle? 42.

[1]

a) ∠2

b) ∠3

c) ∠5

d) ∠4

What is value of $\angle 3 + \angle 4 + \angle 5$? 43.

[1]

a) 120°

b) 360°

c) 180°

d) 200°

44. What is value of $\angle ECD = \angle 4 + \angle 5$?

a) ∠1 + ∠2

b) ∠3 + ∠4

c) $\angle 2 + \angle 3$

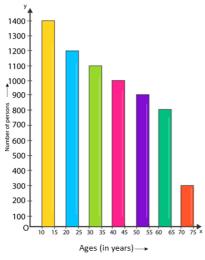
d) $\angle 3 + \angle 5$

45. What is value of $\angle 1 + \angle 2 + \angle 3$?

[1]

[1]

a) 360°


b) $\angle 3 + \angle 4 + \angle 5 = 180^{\circ}$

c) 280°

d) $\angle 3 + \angle 4 = 100^{\circ}$

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

A healthcare survey was done by the state health and family welfare care board of the state of Punjab. The data is collected by forming age groups; i.e; 10-15, 20-25 and so on. The overall data from a town is given below in the form of a bar graph. Read the data carefully and answer the questions that follow.

46. What is the percentage of the youngest age-group persons over those in the oldest age group? [1]

a) 466.67%

b) 500%

c) 500.67%

d) 400.56%

47. What is the total population of the town?

[1]

a) 6700

b) 6800

c) 7000

d) 6600

48. How many persons are more in the age-group 10-15 than in the age group 30-35?

[1]

a) 300

b) 200

c) 250

d) 100

49. What is the age-group of exactly 1200 persons living in the town?

[1]

a) 20-25

b) 25-30

c) 10-15

d) 15-20

50. What is the total number of persons living in the town in the age-groups 10-15 and 60-65?

[1]

a) 2000

b) 2100

c) 2400

d) 2200

Solution

Section A

1. (c)
$$13^{-2/15}$$

Explanation:
$$\frac{13^{1/5}}{13^{1/3}}$$
 = $13^{1/5+1/3}$ = $13^{-2/15}$

2. **(b)**
$$2x + y = 160$$

Explanation: Let the cost of apples be $\exists x$ per Kg and cost of grapes be $\exists y$ per Kg. The cost of 2 kg of apples and 1 kg of grapes on a day was found to be $\exists 160$.

So the equation will be

$$2x + y = 160$$

3. **(d)** 145°

Explanation: Given, PQ | | RS

 \angle PQC = \angle BRS = 60° [alternate exterior angles and \angle PQC = 60° (given)] and \angle DQR = \angle QRA = 25° [alternate interior angles]

[
$$\angle$$
DQR = 25°, given]

$$\angle$$
QRS = \angle QRA + \angle ARS

=
$$\angle$$
QRA + (180° – \angle BRS) [linear pair axiom]

$$= 25^{\circ} + 180^{\circ} - 60^{\circ} = 205^{\circ} - 60^{\circ} = 145^{\circ}$$

4. **(a)**
$$8\sqrt{5}$$
cm²

Explanation: Area of isosceles triangle $= \frac{b}{4} \sqrt{4a^2 - b^2}$

Here,

Thus, we have

$$\frac{8}{4} \times \sqrt{4(6)^2 - 8^2}$$

$$= \frac{8}{4} \times \sqrt{144 - 64}$$

$$= \frac{8}{4} \times \sqrt{80}$$

$$= \frac{8}{4} \times 4\sqrt{5}$$

$$= 8\sqrt{5} \text{cm}^2$$

5. **(b)** 256

Explanation: $(16)^{2x+3} = (64)^{x+3}$

$$\Rightarrow$$
 $(2^4)^{2x+3} = (2^6)^{x+3}$

$$\Rightarrow 2^{8x+12} = 2^{6x+18}$$

Comparing, we get

$$8x + 12 = 6x + 18$$

$$\Rightarrow$$
 8x - 6x = 18 - 12

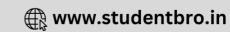
$$\Rightarrow$$
 2x = 6

$$\Rightarrow$$
 x = $\frac{6}{2}$

$$\Rightarrow$$
 x=3

Now
$$4^{2x-2} = 4^{2 \times (3)-2} = 4^{6-2} = 4^4$$

=
$$4 \times 4 \times 4 \times 4 = 256$$


6. **(c)** y = 3

Explanation: The equation of a line parallel to x-axis and 3 units above the origin is

$$y = 3$$

because when a line parallel to x axis in that case equation of line is y = a

where a is the co-ordinate of y-axis and 3 units above the origin value x -cordinate is 3 so required equation is y = 3

7. **(d)** quadrant III and IV

Explanation: Since, sign of point in 3rd quadrant is (-, -).

And in 4th quadrant, it is (+, -).

So, Ordinate of a point is -ve only in 3rd and 4th quadrant.

8. **(b)** DF = 5 cm, \angle E = 60°

Explanation: Given that: In \triangle ABC, AB = 5 cm, \angle B = 40° and \angle A = 80°

Using angles sum property of triangle, we have

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 80° + 40° + \angle C = 180

$$\Rightarrow$$
 120° + \angle C = 180° [:: \angle B = 40° and \angle A = 80°]

$$\Rightarrow$$
 \angle C = 180° – 120°

$$\Rightarrow$$
 \angle C = 60°

It is given that $\triangle ABC \cong \triangle FDE$, so we have

AB = FD, BC = DE and AC = FE &
$$\angle$$
A = \angle F, \angle B = \angle D and \angle C = \angle E

$$\Rightarrow$$
 AB = FD = 5cm and \angle C = \angle E = 60°.

9. **(d)** $6^{1/4}$

Explanation: $\sqrt{2}$ and $\sqrt{3}$

$$=2^{\frac{1}{2}}$$
 and $3^{\frac{1}{2}}$

$$=2^{\frac{2}{4}}$$
 and $3^{\frac{2}{4}}$

$$=4^{\frac{1}{4}}$$
 and $9^{\frac{1}{4}}$

irrational between $\sqrt{2}$ and $\sqrt{3}$ is $6^{1/4}$

10. **(c)** SSS

Explanation: Given that two sides are equal and third side is common I.e AD hence all three corresponding sides are equal

11. **(c)** 20

Explanation: Since, AB ∥ CD

And, BD cuts them

$$y + 2y + y + 5y = 180^{\circ}$$
 (Consecutive interior angle)

$$9y = 180^{\circ}$$

$$y = 20^{0}$$

12. **(b)** 1

$$16^{\frac{-1}{4}} \times \sqrt[4]{16}$$

$$But, 16=2^4$$

$$\Rightarrow 16^{\frac{-1}{4}} \times \sqrt[4]{16}$$

Explanation: $\Rightarrow \{(2)^4\}^{\frac{-1}{4}} \times (2)^{4 \times \frac{1}{4}}$

$$\Rightarrow (2)^{4 imes rac{-1}{4}} imes 2$$

 $\Rightarrow 2^{-1} \times 2$

$$\Rightarrow \frac{2}{2}$$

$$\Rightarrow 1$$

13. **(b)** 27

Explanation: Given $8^{x+1} = 64$

$$8^{x+1} = 64$$

$$8^{x+1} = 8^2$$

$$\Rightarrow$$
 x+1=2

$$\Rightarrow$$
 x=2-1

$$\Rightarrow$$
 x=1

Now
$$3^{2x+1} = 3^{2(1)+1}$$

$$=3^{2+1}$$

$$= 3^3$$

14. (a) second quadrant

Explanation: As we know that abscissa is negative in second and third coordinate and ordinate is positive in first and second coordinate. Therefore the given point (-3, 2) lies in second coordinate.

15. **(d)** 5

Explanation: Distance between the graph of the equations x = -3 and x = 2 is = 2 - (-3) = 5 units

Explanation: In \triangle RST

$$\angle R + \angle S + \angle T = 180^{\circ}$$

$$\Rightarrow 2a^{\circ} + x^{\circ} + 2b^{\circ}$$
 = 180 $^{\circ}$

$$\Rightarrow x^{\circ}$$
 = 180° - 2(a+b)° ...(i)

Now, in
$$\triangle ROT$$

$$\angle$$
ORT + \angle ROT + \angle OTR = 180°

$$\Rightarrow$$
a° + 140° + b° = 180°

$$\Rightarrow$$
 (a+b)° = 180° - 140° = 40° ...(ii)

$$x^0 = 180^\circ - 2\,(40^\circ)$$

$$\Rightarrow x = 100^{\circ}$$

17. **(d)** 6 m^2

Explanation: Adding given three equaitons,

$$2x + 2y + 2z = 24 \Rightarrow x + y + z = 12$$

Therefore,
$$s = \frac{12}{2} = 6 \text{ m}$$

Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

$$=\sqrt{6(6-x)(6-y)(6-z)}$$

$$=\sqrt{6(12-6-x)(12-6-y)(12-6-z)}$$

$$=\sqrt{6(y+z-6)(x+z-6)(x+y-6)}$$

$$=\sqrt{6(9-6)(8-6)(7-6)}$$

=
$$\sqrt{6 \times 3 \times 2 \times 1}$$

18. **(d)** 54

Explanation: Highest Marks = 100

Lowest Marks = 46

Range of data = 100 - 46 = 54

19. (a) none of these

Explanation: none of these

Since
$$0.12\overline{3} = \frac{111}{900} = \frac{37}{300}$$

20. **(b)** 5

Explanation:

P(4, 3)

Using Pythagorous theorem: $OP^2 = OQ^2 + QP^2$

$$OP^2 = 4^2 + 3^2$$

$$\mathrm{OP}^2 = \sqrt{16 + 9} = 5$$

Section B

21. **(b)** (-2, 3)

Explanation: Because value of x -co-ordinate is - 2

22. **(b)** 24 cm²

Explanation: Perpendicular =
$$\sqrt{10^2-8^2}=\sqrt{100-64}$$
 = 6 cm

Area of triangle =
$$\frac{1}{2}$$
 × Base × Height

$$=\frac{1}{2} \times 8 \times 6 = 24 \text{ sq. cm}$$

23. **(c)** 32

Explanation: We have to find the value of 'k' if x = 3 and y = -2 is a solution of the equation 2x - 13y = k

$$2x - 13y = k$$

$$2(3) - 13(-2) = k$$

$$6 + 26 = k$$

$$k = 32$$

24. **(c)** 12 sq.units

Explanation: We have a point (0,0) i.e; origin.

A point (4,0) whose y-coordinate is zero.

So, this point is having 4 units in x-axis = base (let)

A point (0,6) i.e. 6 units in y-axis = height of a triangle

So, these point forms a right angle triangle

so, Area of a triangle = 1/2 × Base × Height

Area of a triangle = $\frac{1}{2} \times 6 \times 4 = 12$ sq. units

25. **(a)** $\frac{6}{5}$

Explanation: $\frac{125}{216}^{\frac{-1}{3}}$

$$= \frac{5}{6} \xrightarrow{3 \times \frac{-1}{3}}$$

$$= \frac{5}{6} \xrightarrow{-1}$$

$$= \frac{6}{5}$$

26. **(d)** $25\sqrt{3}$ cm²

Explanation: Area of equilateral triangle = $\frac{\sqrt{3}}{4}$ (Side)²

$$= \frac{\sqrt{3}}{4} (10)^2$$

=
$$25\sqrt{3}$$
 sq. cm

27. **(c)** 72°

Explanation: Given that $\triangle ABC$

BE is bisector of ∠Band AD is bisector of ∠BAC

$$\angle B = 2\angle C$$

By exterior angle theorem in triangle ADC

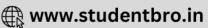
$$\angle ADB = \angle DAC + \angle C ...(i)$$

In \triangle ADB,

$$\angle ABD + \angle BAD + \angle ADB = 180^{\circ}$$

$$2\angle C + \angle BAD + \angle DAC + \angle C = 180^{\circ} [From (i)]$$

$$3\angle C + \angle BAC = 180^{\circ}$$


$$\angle BAC = 180^{\circ} - 3\angle C ...(ii)$$

Therefore,

$$AB = CD$$

$$\angle C = \angle DAC$$

$$\angle C = 1/2 \angle BAC \dots (iii)$$

Putting value of Angle C in (ii), we get

$$\angle BAC + \frac{3}{2} \angle BAC = 180^{\circ}$$

$$\frac{5}{2}\angle BAC = 180^{\circ}$$

$$\angle BAC = \frac{180 \times 2}{5}$$

28. **(b)**
$$\sqrt{12} + \sqrt{5}$$

Explanation:
$$\frac{1}{2\sqrt{3}-\sqrt{5}}$$

$$=(2\sqrt{3}-\sqrt{5})(2\sqrt{3}+\sqrt{5})$$

Rational number

$$(2\sqrt{3} + \sqrt{5})$$
 = $(\sqrt{4 \times 3} + \sqrt{5})$ = $\sqrt{12} + \sqrt{5}$

(a) 0 29.

> **Explanation:** The ordinate of any point on x-axis is always zero. This means that this point hasn't covered any distance on y-axis.

(c) 5 cm 30.

Explanation: Use unitary method

0.25 cm - 100 people

So 1 cm - 400 people

So for 2000 people:

$$\frac{2000}{400}$$
 = 5 cm

(a) 0.003 m^2 31.

Explanation:
$$s = \frac{5+12+13}{2} = 15 \text{ cm}$$

Explanation:
$$s = \frac{5+12+13}{2} = 15 \text{ cm}$$

Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

$$=\sqrt{15(15-5)(15-12)(15-13)}$$

$$= \sqrt{15 \times 10 \times 3 \times 2}$$

$$= 0.003 \text{ sq. m}$$

32. **(c)** 0.4142

Explanation: Given
$$\sqrt{2}$$
 =1.4142

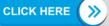
$$\sqrt{rac{\sqrt{2}-1}{\sqrt{2}+1}}$$

$$= \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}}$$

$$=\sqrt{\frac{(\sqrt{2})^2-(1)^2}{(\sqrt{2})^2-(1)^2}}$$

$$=\sqrt{\frac{2-1}{2-1}}$$

$$=(\sqrt{2}-1)$$


(c) 16 cm

33.

Explanation: In triangles $\triangle DNR$ and $\triangle BMR$,

$$\angle$$
N = \angle M = 90°

$$\angle$$
NRD = \angle MRB (vertically opposite angles)

Therefore, $\triangle DNR$ and $\triangle MRB$ are congruent

Therefore, BR = DR = 8 cm

BD = 16 cm

34. **(c)** Mode = 3 Median - 2 Mean

Explanation: For frequency distribution: mean, mode & median connected by the relation

mean - mode = 3(mean - median)

Thus,

mode = 3 median - 2 mean

35. **(b)** 27°, 121°

Explanation: In $\triangle PQR$

$$\angle$$
QPR + \angle PQR + \angle PRQ = 180° (Angle sum property)

$$\angle$$
PQR = 180° - 62° - 64°

 $\angle PQR = 54^{\circ}$

 \angle ORQ = 32° (OR is a bisector)

$$\angle$$
OQR = 27° (OQ is a bisector)

In \triangle OQR

$$\angle$$
OQR + \angle ORQ + \angle QOR = 180° (Angle sum property)

$$\angle$$
QOR = 180° - 32° - 27° = 121°

36. **(b)** x + y = 7

Explanation: x = 2 and y = 5 satisfy the given equation.

37. **(a)** RHS

Explanation: In \triangle ABD and \triangle ADC, we have,

 \angle ADB = \angle ADC (Right angles)

AB = AC (Given and hyptenuses)

AD = AD (common in both)

Therefore, $\triangle ABD\cong\triangle ACD$ by RHS.

38. **(b)** 34

$$given: x = (3 + \sqrt{8})$$

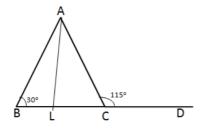
$$\frac{1}{x} = \frac{1}{(3+\sqrt{8})} = \frac{1}{(3+\sqrt{8})} \times \frac{(3-\sqrt{8})}{(3-\sqrt{8})}$$

$$= \frac{(3-\sqrt{8})}{(3^2-(\sqrt{8})^2)} = \frac{(3+\sqrt{8})}{(9-8)} = (3-\sqrt{8})$$

$$(x+\frac{1}{x})=(3+\sqrt{8})+(3-\sqrt{8})=6$$

Explanation:

$$\Rightarrow \left(x + \frac{1}{x}\right)^2 = 6^2 = 36$$

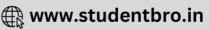

$$\Rightarrow$$
 $\left(x^2 + \frac{1}{x^2}\right) + 2 \times x \times \frac{1}{x} = 36$

$$\Rightarrow$$
 $\left(x^2 + \frac{1}{x^2}\right) + 2 = 36$

$$\Rightarrow$$
 $\left(x^2 + rac{1}{x^2}\right) = 36 - 2 = 34$

39. **(d)** $72\frac{1}{2}^{\circ}$

Explanation:



$$\angle$$
C = 180° - \angle ACD = 180° - 115° = 65°

In \triangle ABC

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 \angle A = 180 - 30° - 65°

$$\Rightarrow$$
 \angle A = 85°

Now in \triangle ALC

$$\angle$$
ALC + \angle LAC + \angle C = 180°

$$\Rightarrow$$
 \angle ALC = 180° - \angle LAC - \angle C

=
$$180^{\circ} - \frac{\angle A}{2} - \angle C$$

= $180^{\circ} - \frac{85^{\circ}}{2} - 65^{\circ}$

$$=180^{\circ}-\frac{85^{\circ}}{2}-65^{\circ}$$

$$=\frac{145^{\circ}}{2}$$

$$=72\frac{1}{2}^{\circ}$$

40. **(c)** 2

Explanation: Adjusted frequency =
$$\left(\frac{\text{frequency of the class}}{\text{width of the class}}\right) \times 5$$

Therefore, Adjusted frequency of 25 - 45 = $\frac{8}{20} \times 5 = 2$

(c) ∠5 41.

Explanation: $\angle 5$

(c) ∠5 42.

Explanation: $\angle 5$

(c) 180° 43.

Explanation: 180°

(a) $\angle 1 + \angle 2$ 44.

Explanation: $\angle 1 + \angle 2$

(b) $\angle 3 + \angle 4 + \angle 5 = 180^{\circ}$ 45.

Explanation: $\angle 3 + \angle 4 + \angle 5 = 180^{\circ}$

46. (a) 466.67%

Explanation: 466.67%

(a) 6700 47.

Explanation: 6700

(a) 300 48.

Explanation: 300

49. (a) 20-25

Explanation: 20-25

(d) 2200 50.

Explanation: 2200

